



International conference

6-9 JUNE 2023 Espace Prouvé, Nancy, France

## Fingertip Model for Analysis of High-Frequency Vibrations

Hans Lindell, RISE Research Institues of Sweden



### Background

- High frequency and high amplitude shock vibration from e.g. impact wrenches is since long suspected to cause vibration injuries and that the risk is underestimated in ISO5349-1.
- The objective is to increase the understanding of vibration propagation into finger tissue.



### **Research questions**

- How are shock vibration being transmitted into the finger tissue?
- To what extent does the skin reduce the transmissibility?
- How is the pressure varying in the finger tissue?

### Method

- Create a 2D FE model of a finger
- Design a test rig where representative shock vibration can be measured and used as input to the model
- Validate the FE model with experiments on finger

J

ZANCL

#### Modelling the fingerprint geometry



#### Material data found in literature varies greatly - Especially for the skin

| Material           | Shear Modulus          | Bulk Modulus |  |
|--------------------|------------------------|--------------|--|
| Soft Tissue Finger | 0.0017 MPa - 0.017 MPa | 2190 MPa     |  |
| Epidermis          | 0.021 MPa – 0.2 MPa    | 2190 MPa     |  |
| Stratum Corneum    | 0.600 MPa – 10 MPa     | 2190 MPa     |  |
| CHA                | 619 30.                |              |  |

#### Material data + geometric data sources:

• M. Gerling: A literature review of the mechanical behavior of the stratum corneum, the living epidermis and the subcutaneous fat tissue. Technical note PR-TN 2006/00450, Philips Research Europe, 2006

ZANC,

- F. M. Hendriks: Mechanical Behavior of Human Skin in Vivo. A Literature Review. Report 2001/820, Philips Electronics, 2001
- M. F. Leyva-Mendvil, A. Page, N.W. Bressloff, G. Limbert: A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J. of the Mech. Behavior of biomedical materials. 49 (2015), 197-219.
- M. Gerling: In vitro mechanical characterization of human skin layers: stratum corneum, epidermis and hypodermis, Dissertation, Technical University Eindhoven, 2006
- Stephanie Marchesseau, T. Heimann, S. Chatelin, R. Willinger, Herve Delingette. Fast porous visco-hyperelastic soft tissue model for surgery simulation: Application to liver surgery. Progress in Biophysics and Molecular Biology, Elsevier, 2010, 103 (2-3), pp.185-196.

# Measurement of skin pattern deformation from varying load FE model material data was tuned to experimental results.



] ]



Unloaded geometry of the fingerprint (left) and numerical validation of the fingerprint distortion under constant pressure loading (right)

#### The model

- The cross-section of the fingertip was modelled in 2D
- The model is split into:
  - Stratum corneum
  - Epidermis
  - Dermis
  - Subcutaneous tissue
  - Bone
  - Fingernail
  - Vibrating steel surface



#### Material data used

JA

| Component           | Density [g/cm <sup>3</sup> ] | Bulk-Modulus [MPa] | Shear-Modulus | Sound speed             | NUL        |
|---------------------|------------------------------|--------------------|---------------|-------------------------|------------|
|                     |                              |                    | [MPa]         | [m/s]                   | 221        |
| Stratum Corneum     | 1.04                         | 2259.0             | 3.100         | 1500.0                  | K          |
| Epidermis           | 1.04                         | 2259.0             | 0.210         | 1500.0                  |            |
| Dermis              | 1.04                         | 2259.0             | 0.080         | 1500.0                  |            |
| Subcutaneous Tissue | 1.00                         | 2161.0             | 0.034         | 1470.0                  |            |
| Bone                | 1.96                         | 20070.0            | 7719.0        | 3200.0                  | Fingernail |
| Nail (@RH55%)       | 1.33                         | 1933.0             | 290.0         | 1744.0                  | *          |
| UNE                 |                              |                    |               | Bone                    |            |
| . 1 (               | 6195                         |                    |               | tissue<br>Steel surface |            |
|                     |                              |                    |               |                         |            |

Stratum corneum

Epidermis

#### The model

- The model has 63500, 2D plain strain elements
  - Element size varies from 0.01-0.08 mm.
- Response of skin layers is time and history dependent
  - Viscoelastic constitutive model
  - Exponential stress relaxation functions
  - Zener model with spring and spring-damper element in parallel

Q



, ANC,

#### FE numerical aspects

- LS-Dyna was used for simulations
- Two step simulation with different numerical schemes
  - 1. Static phase were pre-load is applied to the bone.
    - Implicit time integration used
  - 2. Transient phase were the steel surface vibrates
    - Explicit time integration used



Measured acceleration

#### **Experimental validation**

- An impact rig was designed to generate pulses with high repeatability
  - The hammer is released from a fixed height.
  - Hits a steel cylinder resulting in a high amplitude transient, 17 km/s<sup>2</sup>
  - Fingertip pressed against the steel cylinder
  - The finger force is measured
- The acceleration was measured up to 100 kHz with a laser doppler vibrometer:
  - 1. On the steel surface
  - 2. On the fingernail













### High repetability of shock from test rig

acceleration klippt



#### High repetability of shock

- The model has 63500, 2D plain strain elements
  - Element size varies from 0.01-0.08 mm.
- Response of skin layers is time and history dependent
  - Viscoelastic constitutive model
  - Exponential stress relaxation functions
  - Zener model with spring and spring-damper element in parallel

Q



ZANC

#### **Results – Acceleration**

- Acceleration on finger nail
  - Numerical noise prior to acceleration pulse
  - Fairly good correlation for first peaks
  - The amplitude is reduced approx. 50% to the finger nail



Acceleration on fingernail





15

#### Results – Pressure

- High varying pressure amplitude in the tissue
  - Negative pressures close to -1 Bar in the skin area => Cavitation in tissue can occur





Pressure

#### Conclusions

- The model yields first order correspondence with experiment
- Large pressure variations within finger tissue
  - Negative pressure around 1 Bar => Risk for cavitation
- The skin surface has a minor effect on reducing the propagation of the vibration
- Material model and data could be improved
- Results indicate need for deeper knowledge of injury processes

Further validation could be achieved by measuring the pressure in tissue with fibre sensor pressure transducer

